Welcome to our free-to-use Q&A hub, where students post questions and get help from other students and tutors.

Follow the trail of responses and if you have anything to add please sign up or sign in.

You can ask your own question or look at similar Pure Mathematics questions.

I thought afterwards about simplifying further. I see you've already done it, Sherin. Well spoted.

Lets solve this problem:

Now assuming you'll know the expressions:

a2+b2 =(a+b)2- 2ab   -------------------------- (eq. 1)

a3+b3= (a+b)3-3ab(a+b)---------------------- (eq. 2) 

Follow the steps given by Raquel and you arrive at

 a5 +(1/a5) = 40 -(a+(1/a)) ,  ------------------------------- (eq. 3)

To find a+1/a;

a2 + 1/a2 = 5

a2 + 1/a2= (a+ 1/a)2 - 2(a *1/a)

               = (a + 1/a)2  - 2

Which implies;

(a+1/a)2  -2 = 5

Isolating a + 1/a, we get 

(a + 1/a)2 = 7 ----------------------------------- (eq. 4)

Next, 

a3 + 1/a3 = 8

from the eqn 2;

a3 + 1/a3 = (a +1/a)3 - 3( a*1/a)(a + 1/a)

                = (a+1/a)3 - 3(a + 1/a)

On the RHS, we will take out (a +1/a) and then interchanging LHS and RHS we get ;

(a +1/a) ((a+1/a)2 -3) = a3 +1/a3

(a +1/a) ((a+1/a)2 -3) = 8   ------------------- ( a3 +1/a3 = 8)

(a+1/a)(7 - 3) = 8               -------------------- ( from eq.4 we know (a+ 1/a)2 = 7)

(a + 1/a) (4) = 8

(a + 1/a) = 8/4

(a+1/a) = 2  ---------------------------------- (eq .5)

put a + 1/a = 2 in eq.3

We get

a5 + 1/a5 = 40 -2

a5 + 1/a5 = 38



thanks a lot

1. Multiply both equations to get a new equation:

(a2+(1/a2))•(a3+(1/a3))=5•8

2. To open brackets, multiply each of the terms in the first brackets with each term of the second bracket

a5+(a2/a3)+(a3/a2)+(1/a5)=40

3. Isolate a5+(1/a5) in one side of the expression

a5+(1/a5)=40-((a3/a2)+(a2/a3))

4. Simplify fractions on the right expression

a5+(1/a5)=40-(a+(1/a))

Footer Graphic